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Abstract – The allometry relationship (AR) between two properties of a living network X and
Y is X = aY b where one or both of the variables is a measure of size and the allometry coefficient
a and exponent b are fit to data. Many investigators have focused on determining the proper
value of b entailed by an appropriate biological model, whereas others have argued that the
allometry coefficient plays the more important role. Herein we use metabolic data to determine
a probability density function (pdf ) for the allometry coefficient P(a) with constant allometry
exponent and a pdf for the allometry exponent Ψ(b) with a constant allometry coefficient.
The two distributions are found to imply that the allometry parameters co-vary and an explict
functional relation between them is determined. The empirical pdf P(a) is a Pareto distribution
and establishes an inconsistency between reductionistic and statistical models of the interspecies
AR. This inconsistency is resolved using the probability calculus to establish that the scaling of
the pdf is the proper origin of allometry.

Copyright c© EPLA, 2011

Introduction. – Allometry is the study of size and
its consequences [1] both within a given organism and
between species in a given taxa. It was first recognized
by Cuvier [2] in 1812 that brain mass increases more
slowly than total body mass (TBM) proceeding from small
to large species within a taxon. This observation was
first expressed mathematically as an allometry relation
(AR) in 1892 by Snell [3]. Four decades later Sir Julian
Huxley [4] proposed that two parts of the same organism
have different but proportional rates of growth. In this way
if Y is a measure of the size of a living network with growth
rate θ and X is a subnetwork observable with growth rate
ε he conjectured that

1

εX

dX

dt
=
1

θY

dY

dt
. (1)

Equation (1) can be directly integrated to obtain the time-
independent intraspecies allometry growth law involving
the host network Y and the subnetwork X:

X = αY β , (2)

where the allometry coefficient α and exponent β (= ε/θ)
are empirically determined parameters [1,5,6]. A modern
derivation of eq. (2) was given by Stevens [7] who

(a)E-mail: Bruce.J.West@us.army.mil

distinguished between intraspecies and interspecies
allometry and demonstrated that such a scaling relation
always arises when the variables involved are self-similar.
Consequently, ARs fall into the category of homogeneous
scaling relations of the form X(λY ) = λβX(Y ), see for
example [8].
Two distinct methods dominate the many derivations

of the theoretical AR, eq. (2). The first method is based
on first-principles reductionistic arguments starting from
an assumed form for the underlying mechanisms and
deducing the necessity of eq. (2). A mechanism-based
derivation of AR using a fractal nutrient transport model
was given by West et al. [9] for X the basal metabolic
rate (BMR) of an organism and Y the total body mass
(TBM) from which they deduced β = 3/4. This argument,
like other reductionistic approaches, dating back to Sarrus
and Rameaux [10] in 1839, focuses on determining the
proper value of the allometry exponent β entailed by
an appropriate biological model. The latter authors [10]
reasoned that the heat generated by a warm-blooded
animal is proportional to its volume and the heat loss is
approximately proportional to the animal’s free surface
thereby deducing the “surface law” with β = 2/3.
The second method is phenomenological and involves

statistics; collecting data, identifying patterns (laws) in
the data and developing methods of statistical analysis.
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Warton et al. [11] point out that fitting a line to a
bivariate data set is not a simple task and the AR liter-
ature is filled with debate over the proper methodology.
Sir Julian readily adopted the statistical approach of
linear regression of lnX = lnα+β lnY on multiple data
sets to determine the allometry coefficient α and exponent
β. The sophisticated statistical techniques such as the
principle component analysis [11] were not available to
Sir Julian and although they can be found in the modern
AR literature least-square regression still seems to be the
method of choice [12,13].
A third method that is rarely used in the AR litera-

ture [14] is the probability calculus, which we apply herein.
In the second section the fluctuations in metabolic ARs

are shown to yield a Pareto pdf in the allometry coefficient
with the allometry exponent held fixed and a Laplace pdf
in the allometry exponent with the allometry coefficient
held fixed. The allometry parameters are shown to co-vary
and the functional relation between the allometry expo-
nent and coefficient is derived. In the third section the
probability calculus is used to derive the empirical AR
from the scaling of the pdf for the allometry variables X
and Y . In the fourth section we draw some conclusions.

Fluctuations in allometry parameters. – Careful
reading of Huxley’s book reveals that it is not eq. (2) that
is fit to data because the data only occasionally consist of
individual measurements of X and Y . The data primarily
consists of averages over collections of such measurements
on individual specimens and are denoted by 〈X〉 and 〈Y 〉.
This change in variables is not discussed in the text of his
book but is explicitly stated in the table captions. This
same duality permeates the literature [1,5,6] subsequent
to Huxley in which the theoretical discussions focus
on (X,Y ) [9] but the data fits usually use (〈X〉, 〈Y 〉)
[13,15,16]. The data within a single species often has little
variation and the theoretical AR adequately describes the
intraspecies scaling [12,17]. On the other hand, data across
species within a given taxa relate average quantities and
an empirical AR describes the interspecies scaling.
To reconcile these very different descriptions of AR, the

theoretical and empirical ones, we consider the average
of eq. (2) over an ensemble of realizations of the data
〈X〉= α〈Y β〉 and note that 〈Y β〉 �= 〈Y 〉β if β �= 1. In order
to derive the empirical AR from eq. (2) we introduce
X = 〈X〉+ δX and Y = 〈Y 〉+ δY into the equation. After
some algebra the allometry coefficient can be expressed as
a= α+ δa, where δa is the fluctuation from the empirical
value. Thus, we rewrite eq. (2) as 〈X〉= (α+ δa)〈Y 〉β ,
which when δa/α� 1 simplifies to the empirical AR:

〈X〉= α 〈Y 〉β (3)

which has the form of the theoretical AR with the variables
replaced with their average values.
It is evident that in order to derive the empirical

AR from the theoretical one the pdf of the allometry
coefficient fluctuations must be very narrow. The

intraspecies AR may well satisfy this condition, see
for example, Glazier [17]. However the interspecies AR
may not. We emphasize that eq. (3) only follows from
eq. (2) when δa/α� 1 implying that the distribution of
fluctuation must be very narrow. This condition on the
fluctuations in the allometry coefficient can be directly
tested using available data. Note that we assume that
all the fluctuations are associated with the allometry
coefficient with the allometry exponent held fixed. We
discuss the implications of this perspective more fully in
due course.
Savage [18] made similar observations and established

criteria for the conditions under which the fluctuations
in TBM yield 〈Mβ〉 ≈ 〈M〉β in terms of the standard
deviation of the fluctuations. He observed that this is not a
good approximation when applied to taxonomy groupings
that have a large mass range. We compliment his analysis
and determine the empirical distribution from which the
corrections to such averages are determined and explore
the implications of having a large error when replacing
the average of a function with the function of the average
in an AR.

Allometry coefficient. Heusner [15] studied the most
commonly quoted interspecies AR, those being between
BMR X =B and TBM Y =M , which we write as

〈B〉= a 〈M〉b . (4)

He conjectured that the allometry exponent b has a fixed
value β and the allometry coefficient a remains the central
mystery of allometry. Meakin [8] asserted that in homoge-
neous scaling relations it is the coefficient that embodies
the “real physics” behind power-law relations. This latter
view has also emerged in allometry, see Etienne et al. [19]
and references therein. We explore the implications of
Heusner’s conjecture to test the assumption δa/α� 1 and
treat the interspecies allometry coefficient as a random
variable:

a′ =
a

α
=
〈B〉
α〈M〉β , (5)

with the allometry exponent b= β held fixed. Thus there
is a single value of the allometry coefficient calculated for
each (〈B〉, 〈M〉)-pair.
We consider the data relating the average BMR to the

average TBM for 391 species of mammal examined by
Heusner [15] as well as by Dodds et al. [16]. A regression
of the logarithmic transformation of eq. (4)

ln 〈B〉= lnα+β ln 〈M〉 (6)

on these data that minimizes the mean-square error is
a straight line on double logarithmic graph paper. This
straight line is found to have slope β = 0.71 so that
empirically 2/3<β < 3/4 with the allometry coefficient
fitting the smallest available TBM being α= 0.02. Savage
et al. [13] obtained the same value of β as Heusner [15],
Dodds et al. [16] and us, using 626 species where the 95%

38005-p2



Statistical origin of allometry

Fig. 1: (Colour on-line) This figure depicts the random nature
of the normalized allometry coefficient a′ = a/α with β = 0.71
for 391 mammalian species tabulated in Huesner [15]. Each
entry is calculated from a (〈B, 〈M〉〉-data point calculated
using eq. (5). Line segments connect the data points to aid
the eye in assessing variability.

confidence interval excluded both 3/4 and 2/3. They [13]
subsequently logarithmically binned the data to change
the slope to be compatible with 3/4.
The fluctuations in the allometry coefficient normalized

to α with the allometry exponent held fixed at the
empirical value β = 0.71 as determined by eq. (5) are
depicted in fig. 1.
In fig. 2 we depict the histogram of the fluctuations

in the allometry coefficient shown in fig. 1. The data
in fig. 1 are partitioned into twenty equal-sized bins on
a logarithmic scale and a histogram is constructed by
counting the number of data points within each of the bins
as indicated by the dots in fig. 2. The solid line segment
in this latter figure is the best mean-square fit to these
twenty numbers.
The functional form for the histogram given by the

curve in fig. 2 is expressed in eq. (7) and the quality of
the fit to the residue data is determined by the correlation
coefficient to be r2 = 0.98. The normalized histogram
N(ln a′) on the interval (0,∞) using N(ln a′) d ln a′ =
P (a′) da′ yields the pdf :

a′P (a′) =
µ

2

{
a′µ, a′ � 1,
1
a′µ , a

′ � 1,
(7)

and empirically µ= 2.79. Note that it is difficult to
determine the value of the power-law index from data and
so the fitted value obtained here should be viewed with
some caution [20]. Equation (7) is an inverse power-law
pdf or asymptotically a Pareto distribution describing the
variability of a trait across multiple species, which in this
case is BMR. The Pareto distribution indicates that the
condition that the allometry coefficient pdf be narrow,
the condition required to derive the empirical AR from
the theoretical one, is not satisfied. The size of a typical

Fig. 2: (Colour on-line) The histogram of the normalized
deviations from the prediction of the allometry relation
a′ = a/α using the data from fig. 1 partitioned into 20 equal-
sized bins on a logarithmic scale. The solid line segment is the
linear regression on eq. (7) to the twenty histogram numbers,
which yields the power-law index µ= 2.79 and the quality of
the fit measured by the correlation coefficient r2 = 0.98.

fluctuation can be estimated using the standard deviation
calculated using eq. (7) and turns out to be 0.017 so that
δa/α∼O(1).
Consequently, reductionistic arguments directed

towards deriving eq. (2) must be carefully considered to
properly account for fluctuations. The interspecies AR
given by eq. (3) cannot be derived from the theoretical AR
when the condition for that derivation is violated. Note
that the same distribution for the allometry coefficient
with µ= 3.89 was obtained using the BMR for 533 species
of birds listed by McNab [21]. We do not record the latter
figure here since it does not differ in any qualitatively
significant way from fig. 2.

Allometry exponent. A complementary phenomeno-
logical approach to that in the preceding subsection that
seems equally reasonable mathematically is to assume that
the allometry coefficient is constant and the variation is
due to the random nature of the allometry exponent. The
fluctuations in the allometry exponent are obtained from
eq. (4) in terms of the deviation from the fitted value
to be

δb=
ln(B/α)

lnM
−β. (8)

If we assume β = 0.71 then eq. (8) provides us with the
statistical fluctuations in the allometry exponent shown
in fig. 3. Thus, there is a single value of the allometry
exponent calculated for each (〈B〉, 〈M〉)-pair and we
determine the pdf for the random allometric exponent
under the assumption that a= α.
The variability in the allometry exponent determined

by the data constructed from eq. (8) is depicted in fig. 3.
In fig. 4 these data from fig. 3 are used to construct a
histogram exactly as we did for the allometry coefficient.
The solid line segment in fig. 4 is the best fit to the twenty
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Fig. 3: (Colour on-line) This figure depicts the random nature
of the allometry exponent with α= 0.02 for 391 mammalian
species tabulated in Huesner [15]. Line segments connect the
data points to aid the eye in assessing the variability. Each
entry is calculated from a (〈B, 〈M〉〉-data point calculated
using eq. (8).

numbers of the histogram with minimum mean-square
error. The functional form for the histogram of deviations
from the allometry exponent β is determined by the curve
in fig. 4 and the quality of the fit to the histogram is
determined by the correlation coefficient r2 = 0.97. The
histogram is fit by the Laplace pdf

Ψ(b) =
γ

2
exp[−γ |b−β|] (9)

with the empirical value γ = 12.85.

Co-variation of allometry parameters. We have
obtained two separate distributions for the same data.
In the first distribution fluctuations were associated with
the allometry coefficient and the allometry exponent was
held constant, in the second distribution the fluctuations
were associated with the allometry exponent and the
allometry coefficient was held constant. As pointed out
by Glazier [12] species within a taxon represent a cloud of
different metabolic rates and not just the linear metabolic
level determined by linear regression. His metaphoric
cloud is incorporated into the present discussion by aban-
doning the assumption that the allometry coefficient and
exponent are independent of one another and requiring
that the probability of a given fluctuation is the same
regardless of representation so that

P(a) da=Ψ(b) db. (10)

In order to calculate a non-zero Jacobian of the trans-
formation between the two allometry parameters requires
that they be functionally related. We assume b= β− cln a,
so that by inserting the allometry exponent pdf eq. (9) into
(10), using the Jacobian |db/da|= c/a, and simplifying we
obtain

P(a) = γc
2

{
aγc−1, for a� α,
1

aγc+1
, for a� α. (11)

Fig. 4: (Colour on-line) The histogram of the deviations from
the prediction of the AR using the data depicted in fig. 3
partitioned into 20 equal-sized bins on a logarithmic scale. The
solid line segment is the best fit of eq. (9) with ∆b≡ b−β
to the twenty histogram numbers, and the quality of the
fit is measured by the correlation coefficient r2 = 0.97 with
γ = 12.85.

Comparing eq. (11) with eq. (7) we can identify µ= γc and
obtain the pdf for the allometry coefficient P (a′) da′ =
P(a) da. Using the empirical values µ= 2.79 and γ =
12.85 we obtain c= 0.217 and consequently the empirical
transformation can be written as

b= 0.71− 0.50 log10 a. (12)

Note that this functional dependency of the allometry
exponent on the allometry coefficient is consistent with
the empirical co-variation relation obtained by Glazier [12]
who used a completely different method. The numerical
value of the allometry exponent 0.71 in the transformation
eq. (12) is within a few percent of that obtained by
Glazier [12]. The reasons why the value of the coefficient
in the allometry coefficient term differs from that of
Glazier [12] are two: we are using a different data set to
fit the parameters and as is well known it is very difficult
to obtain an accurate power-law index from data [20].

Evolution of probabilities. – This statistical result
that the fluctuations of the interspecies AR can be very
large weakens the predictions of reductionist theories.
Said differently the condition that the distribution of
fluctuations be narrow in order to derive the empirical
AR from the theoretical one is violated by the Pareto PDF
for the allometry coefficient using interspecies metabolic
data. In order to resolve this contradiction more generally
we use the probability calculus and consider a probability
analog of Sir Julian’s assumption.
Consider the dynamics of a complex network that is

heterogeneous in the random variable and whose fluctua-
tions in time contain historical information. We choose a
fractional derivative in time given by a Riemann-Liouville
operator of order υ [22,23] Oυt and a Reisz potential in

38005-p4
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the phase space variable z of order η [24] Oηz and formally
represent the fractional diffusion equation (FDE) as

G (Oυt , O
η
z )P (z, t) = 0, (13)

where G is a linear function of the operators. However
rather than reviewing the fractional calculus as it applies
to the FDE [22,23,25] we instead examine the scaling
properties of its solution. The Fourier transform of an
analytic function f(z) is f̃(k) and the Laplace trans-
form of an analytic function g(t) is ĝ(u). Consequently
the FDE can be expressed in Fourier-Laplace space as
G∗(u, k)P ∗(k, u) = 0, and the asterisk denotes the Fourier-
Laplace transform.
The Fourier-Laplace transform of the pdf can be written

[25] as

P ∗(k, u) =
uυ−1

uυ +Kη |k|η (14)

andKη is a constant. The pdf that solves the FDE is given
by the inverse Fourier-Laplace transform of eq. (14) and
is [25]

P (z, t) =
1

tµz
Fz

( z
tµz

)
(15)

with µz = υ/η. Here Fz(q) is an analytic function of the
similarity variable q= z/tµz , t is the time and µz is a
scaling parameter indexed to the allometry variable of
interest. The scaling distribution eq. (15) indicates that
the phenomenon is a fractal stochastic process.
It is reasonable to assume that the distribution of an

ensemble of host networks and the distribution of an
ensemble of subnetworks strongly coupled to its host
are closely related. For the phenomena considered herein
the ensemble distributions are those for fractal processes
with different fractal dimensions. Therefore we assume
that both X and Y are described by eq. (15) with the
appropriate changes in indices. The average value of the
phase space variable is

〈Z〉= Z̄tµz (16)

with the constant

Z̄ =

∫
qFz(q) dq (17)

and we obtain time-dependent averages for both 〈X〉 and
〈Y 〉. Taking the time derivatives of these averages and
eliminating the time from the two equations yields the
differential growth of the average values

1

µx 〈X〉
d 〈X〉
dt
=

1

µy 〈Y 〉
d 〈Y 〉
dt
. (18)

Equation (18) integrates directly to the empirical AR,
eq. (4), see West and West [26] for more details. The
allometry parameters are determined to be b= µx/µy and
a= X̄/Ȳ b. Thus, in analogy with Sir Julian’s assumption
of the ratio of growth rates being constant, we determine
that the ratio of indices from the pdf ’s yield a proportional
relative growth of the two averages.

Conclusions. – Herein we proved that the empirical
AR can only be derived from the theoretical AR when
the magnitude of the fluctuations in the allometry coeffi-
cient are sufficiently small. This condition was tested for
interspecies AR using metabolic aviary and mammalian
data and it was found that the empirical AR could not be
derived from the theoretical one. The argument required
changing representations from one in which the network
observables are random and the allometry parameters are
empirical constants, to the equivalent representation in
which the average network observables are constant and
the allometry parameters are random. From the latter
representation we determined that the allometry parame-
ters are not independent of one another and the func-
tional relation between them agrees with that obtained
from a phenomenological analysis of a great deal of data
by Glazier [12].
The failure of the empirical AR to follow from the

theoretical one implies that the reductionist arguments
used to derive the theoretical AR, such as the fractal
nutrient transport models based on fractal geometry [9],
must be more carefully considered to properly incorporate
random fluctuations. The scaling of interspecies metabolic
AR is not a consequence of fractal geometry, but results
from fractal statistics and the subsequent scaling of the
pdf ’s as we argue in the third section.
Meakin [8] observed that the exponents are universal

in many homogeneous scaling phenomena and the coeffi-
cients provide the only means to control physical proper-
ties and behavior. This observation is consistent with the
results of our analysis that AR is entailed by scaling of the
pdf for the statistical fluctuations of the allometry parame-
ters. However his analysis did not address the two-variable
fitting used herein from which we were able to deduce a
relation between the allometry exponent and allometry
coefficient in agreement with the linear regression analy-
sis of Glazier [12]. Consequently, the allometry exponent
is not universal. Additional measurements are necessary
to distinguish between the probabilistic modeling of the
allometry parameters and the mechanistic modeling of
others [19].
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